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Why tornado-like vortices are persistent?
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Abstract

The tornado-like vortices and vortical motions in turbulent
flows have notable similarities. Both types of vortical flows
have outer scales, with are subject to external influence; in-
ner scales, which are affected by viscosity; and a range of in-
ertial scales that display a degree of universality. Both types
of the flows transfer kinetic energy from large to small scales,
where the action of viscosity becomes significant. However,
unlike turbulent flows, tornado-like flows are quite regular and,
it seems, can remain laminar under some conditions. At the
large scales, these flows have a special mechanism (the com-
pensating mechanism) that prevents unrestricted generation of
tangential vorticity and is, it seems, primarily responsible for
preserving regularity of the flow. Unsteady small-scale axisym-
metric disturbances, which may escape control of the compen-
sating mechanism, are analysed in the present work. These dis-
turbances are shown to represent inertial waves, which are gen-
eralised for arbitrary axisymmetric vortical flows and found to
be stable provided the axial vorticity does not change its sign.

Motivation

A number of vortical flows — tornadoes, hurricanes, firewhirls
and bathtub vortices — are characterised by centripetal motion
that dramatically amplifies rotation in the flow. These flows are
referred to here as tornado-like flows. The tornado-like flows
are generally unsteady due to continuing accumulation of axial
vorticity at the center but are quite stable and persistent: vor-
ticity, which is a common source of instability and turbulence
in fluid flows, acts as a factor that stimulates a regular rotation.
Tornadoes and firewhirls can persist for hours, while the life
span of a hurricane can be measured in days or even weeks.

The tornado-like flows are mostly turbulent, although this tur-
bulence is not necessarily generated by the tornadic vorticity
and usually is simply present in the atmosphere. In the late
1990s – early 2000s, a series of bathtub flow experiments were
conducted in the CMM group at The University of Queensland
[2, 3]. Figure 1 illustrates one of these experiments, where the
flow in a rotating tank was seeded by small particles. The core
of the flow seems laminar despite a large Reynolds number
(>10000) and strong vorticity present in the flow. The exis-
tence of a 3-dimensional laminar vortical flow with very large
Reynolds numbers indicates that vorticity can play a stabilising
role in tornado-like flows. This issue is examined further in this
work.

Note that the Ekman boundary layer at the bottom of the tank
may be turbulent and this layer tends to swell near the drain
– see [10, 1]. The experiments conducted at UQ involved a
long settlement period to achieve a uniform (i.e. solid-body)
rotation before draining the tank. Cristofano et. al. [4] recycled
the water from the drain to establish a steady flow and detected
turbulent fluctuations in their bathtub vortex experiment.

Stability of vortical flows

Tornado-like flows are complex flows, whose velocity fields
are not known exactly. While comprehensive analytical treat-

Figure 1: Photo taken in experiments with bathtub vortex on a
rotating table [2].

ment of stability of these flows thus may be difficult, stability of
model flows that to some extent resemble realistic tornado-like
flows has been repeatedly analised in publications [11]. The
stability of a potential vortical sink or source was studied by
Shusser and Weihs [12]. They concluded that the vortical source
is always unstable, while the vortical sink is stable unless the
Reynolds number is too low. The analysis was conducted using
vorticity equations and was essentially based on the absence of
axial vorticity in the bulk of the flow. The stability of the Burg-
ers vortex was investigated by Gallay and Maekawa [5], who
concluded that this vortex is stable.

While the results mentioned above are undoubtedly relevant,
the tornado-like flow has one feature that distinguishes it from
the vortices mentioned above — the presence of axial vorticity
at the periphery of the flow. This can bring effects (including
unstable modes) that are not detected in the theories mentioned
above.

Compensating mechanism

The evolution of vorticity in a tornado-like flow is controlled by
the compensating mechanism [8]. On the one hand, this mech-
anism allows the flow to reach high levels of axial vorticity, that
becomes no longer passive and affects the velocity field. A sta-
ble tornado-like vortex cannot form if vorticity in the flow is too
weak and is not sufficiently amplified by the flow. On the other
hand, the compensating regime prevents excessive increase of
vorticity to the levels that would destabilise the flow. While
the flow and vorticity are three-dimensional, the compensating
mechanism limits the magnitude of tangential vorticity to val-
ues that modulate but do not alter the regular character of the
flow.

The compensating mechanism acts in the intensification region



shown in Figure 2 and results in the 4/3 power law for the ax-
ial vorticity (more accurately, with a range of 4/3 to 3/2 for the
vorticity exponent) [6, 8]. Hence, two major possibilities are
present in three-dimensional flows with very intense vorticity
and high Reynolds numbers: 1) development of primary and
secondary instabilities followed by transition to turbulence (this
does not mean that all flows with vorticity are linearly unsta-
ble but, practically, presence of sufficiently strong vorticity re-
sults in bifurcation and transition) or 2) preserving the regular
character of the flow in a tornado-like vortex. It is interesting
that both of these possibilities have conceptual similarities il-
lustrated in Figure 2: the existence of outer and inner scales
with an interval between them. The outer scales are affected by
geometry and are not universal. Viscosity plays a role in the
inner-scale effects. The intermediate intervals are inertial and
transport 1) the kinetic energy down the scales in Kolmogorov
turbulence or 2) the angular momentum to the centre of the flow
in tornado-like vortices. When the Reynolds number is suffi-
ciently high that the inertial interval of turbulence reaches two
orders of magnitude, the 5/4 power law becomes clearly visible.
The outer and inner scales in tornado-like flows are usually sep-
arated by a single order of magnitude. The tornadic flows are
also affected by unsteady environment, so that the actual power
exponent tends to fluctuate over its equilibrium value. For ex-
ample, landfall of a hurricane may cause noticeable changes in
exponents and it might take a few days before the exponents re-
lax to their equilibrium values. The 4/3 to 3/2 range is clearly
observed only when measurements are averaged over a large
number of experiments [8].
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Figure 2: Conceptual similarities between two types of evolu-
tion of 3-D vortices in fluid flows: turbulence and tornado-like
vortices: non-universal outer and viscous inner scales are sepa-
rated by the inertial/intensification intervals.

Breaking the compensating mechanism

While being important for life-long evolution of the vortex, the
compensating mechanism is rather slow and acts only at large
scales. This mechanism can be broken if a small-scale distur-
bance is introduced into the flow [7]. Alternatively, the mech-
anism may fail to keep rotational components under control in
the core of the flow, causing vortex breakdowns and flow re-
versals at the axis [8]. The simple action of the compensat-
ing mechanism through adjustments of vorticity vectors is illus-
trated in Figure 3. The vorticity vector AB is initially directed
down but the flow over the bump turns it towards A′B′. The
compensating mechanism acts to bring the vorticity vector to-
wards its undisturbed direction A′B′′ (see details in [7, 8]). If
the scale of the disturbance ∆r is sufficiently large (larger then a

certain critical scale) , then the flow adjusts itself to preserve its
structure. The critical scale is defined δcr ∼ r0/K, where K rep-
resents the vortical swirl ratio, which is specified and used in
the next section. The vortical swirl ratio K is large in flows with
strong vorticity and the strong vortex approximation [10, 6, 8]
is based on K� 1. If, however, the scale of the bump is small
∆r� δcr, the asymptotic matching carried out in ref. [7] indi-
cates that compensating mechanism fails and a wave of distur-
bances propagates deeply into the flow. This indicates possible
small-scale instabilities, but the asymptotic analysis of the ref.
[7] was restricted only to time-independent perturbations. The
evolution of unsteady short-scale disturbances is considered in
the next section.
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Figure 3: A small disturbance in a vortical flow with axial vor-
ticity [7]

Unsteady waves

Dimensionless form of the governing equations

The dimensionless form of the equations governing vorticity
evolution in axisymmetric unsteady flow is given by [8]
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The variables are normalised according to
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where ψ∗ = v∗r2
∗, t∗ = γ∗/(ω∗r∗v∗) and all characteristic values

are denoted by the subscript ”∗”.The main parameters determin-
ing the character of the flow are the vortical swirl ratio
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which is reciprocal of the swirling (modified) Rossby number
Rs, and the Reynolds and Strouhal numbers
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The vortical swirl ratio and swirling Rossby number are linked
to the conventional swirl ratio S and the conventional Rossby
number Ro
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The conventional asymptotic analysis in a tornado-like flow
with strong vorticity is based on assuming large K and small
St [10, 8].

Perturbation analysis

Assuming that X = R−R0 � R0, and Z ∼ X , all variables are
perturbed with respect to arbitrary local values at R = R0 and
Z = 0
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The values Ωz0 = Ω0, Vr0 =−V0 and Γ0 are treated as constants
representing the undisturbed flow in the vicinity of the bump at
a given external time T (the faster running time τ is estimated as
τ/T ∼ X/R0), while Ωr0 = 0 and Vz0 = 0 at the leading order.
The perturbations are linked by the equations
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At the order of O(ε), equations (1)-(3) become a system
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for three unknown variables Ψ′, Ω′
θ

and Γ′.

Harmonic wave

The solution is sought in the form of a harmonic wave so that
for every disturbance F ′(X ,Z,τ) = F̂ exp(i(Λτ+ βzZ + βrX))

where F̂ is the complex amplitude. The system of equations
(14)-(16) is transformed into(
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The disturbances under consideration do not have unstable
modes assuming that Γ0Ω0 ≥ 0 everywhere in the flow. The
physical meaning of the angle α is shown in Figure 3.

The physics of the waves

In this section, we return to dimensional variables. The dimen-
sional form of the system (14)-(16) can be rewritten as a single
equation for ψ′ = Ψ′ψ∗, which takes the form of(
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v0 = v∗V0, r0 = r∗R0, γ0 = γ∗Γ0 and ω0 = ωz0 = ω∗Ω0. The
equation, previously obtained for stationary disturbances [7],
can be recovered from (21) by discarding ∂/∂t. As expected, the
limit of δcr→ 0 (i.e. K0→ ∞) corresponds to the strong vortex
approximation [8], which in this case is given by ∂2ψ′/∂z2 = 0
at the leading order.

The dimensional form of the harmonic wave is given by the
exponent exp(i(λt + kzz+ krr)). The dispersion relation (20)
becomes

λ = v0kr±∆λ, ∆λ = 2ωeff cos(α), ωeff =
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These waves represent a generalisation of the inertial waves in
fluid flows with a uniform (i.e. solid-body) rotation [9] to ar-
bitrary vortical motions. If fluid rotates uniformly with angular
velocity ωsb so that γ = ωsbr2 and ω0 = 2ωsb, then ωeff = ωsb
and the derived equation coincides with that given by Landau
and Lifshits [9]. These waves cannot exist in a potential vortex
where ω0 = 0 even if γ0 > 0 is very large but even a small vor-
ticity present in the flow may be sufficient to reach significant
ωeff and observe the waves. Note that the waves are unstable
when ωzγ < 0 (in this case ωz must change its sign in the flow).
Development of instabilities in the regions where ωzγ < 0 is
expected (see proposition 1 in [6]) and related to the Rayleigh
instability condition.

Conclusions

Tornado-like vortices are persistent due to several stabilising
mechanisms. At large scales, the compensating mechanisms
acts to constrain the tangential vorticity, which is significant
in developed tornado-like flows, and preserve the axisymmet-
ric structure of the flow. At small scales, the unsteady waves,
which are analysed in the present work and found to be similar
to the inertial waves propagating in uniformly rotating fluid, can
be observed. These waves are stable too provided ωzγ ≥ 0 and
this condition is typically satisfied in the tornado-like flows. We
also note the conceptual similarity of turbulence and tornado-
like flows, which both have the outer and the inner scales and
the inertial/intensification range in between these scales.
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